The Gross-Zagier Formula on Shimura Curves (eBook)

by (Author)

  • 56,301 Words
  • 272 Pages

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations.


The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas.



The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations.


The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas.



The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.


  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
:
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
:
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
  • 0
    0
  • 1
    1
  • 2
    2
  • 3
    3
  • 4
    4
  • 5
    5
  • 6
    6
  • 7
    7
  • 8
    8
  • 9
    9
Average Reading Time Login to Personalize

The Gross-Zagier Formula on Shimura Curves

No reviews were found. Please log in to write a review if you've read this book.

Item added to cart

9781400845644 bookshelf
The Gross-Zagier Formu...
$92.50
QTY: 1

9781400845644 bookshelf

Write a Review for The Gross-Zagier Formula on Shimura Curves

by Xinyi Yuan, Shou-wu Zhang, Wei Zhang

Average Rating:
×

The Gross-Zagier Formula on Shimura Curves has been added

The Gross-Zagier Formula on Shimura Curves has been added to your wish list.

Ok